Primal-dual Interior-point Algorithm for Lo Based on a New Kernel Function

نویسندگان

  • Xin Li
  • Mingwang Zhang
  • Ping Ji
چکیده

Based on a new kernel function, a large-update primal-dual interior-point algorithm for solving linear optimization is proposed. The kernel function is used both for determining the search directions and for measuring the distance between the given iterate and the μ-center for the algorithm. By using several new technical lemmas, the iteration complexity bound as O( √ n log n log nε ) is obtained, which coincides with the currently best iteration complexity bounds for large-update methods. In addition, we present some preliminary numerical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Large-update interior point algorithm for LCP

In this paper we propose a new large-update primal-dual interior point algorithm for P∗(κ) linear complementarity problems (LCPs). We generalize the analysis of BER’s primal-dual interior point algorithm for LP to P∗(κ) LCPs. New search directions and proximity measures are proposed based on a new kernel function which has linear growth term. We showed that if a strictly feasible starting point...

متن کامل

Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function

Interior-point methods (IPMs) for semidefinite optimization (SDO) have been studied intensively, due to their polynomial complexity and practical efficiency. Recently, J.Peng et al. [14, 15] introduced so-called self-regular kernel (and barrier) functions and designed primal-dual interior-point algorithms based on self-regular proximity for linear optimization (LO) problems. They have also exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016